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MATHEMATICAL MODEL OF LEAST COST 
PLANNING OF REGIONAL ENERGY SUPPLY 

V. T. Borukhov and V. L. Ganzha UDC 338.620.9.004:183 (476) 

A number of simple mathematical models for least cost planning of energy supply are considered. Optimum 

plans have been found and ranking of energy sources is suggested. 

Introduction. At present, regional least cost planning has been widely recognized as the most effective 

method in the system of long-term forecasting of energy supply [1 ]. In the general case, least cost planning is a 

process of development and implementation of the strategy of using a resource or a set of resources that are able 

to provide for meeting the need for energy supply in a particular region at the lowest overall cost, including 

environment protection, competitiveness of new energy sources compared with those traditional for this power 

system, and some other situational considerations. 

The development of planning starts from analysis of demographic trends in the region, the potential of 

economic development, and the present need for energy services, and on this basis a forecast of the ranges of energy 

consumption for the near future is made. Then, traditional and potential sources are compared to determine their 

reliability and cost in meeting the energy needs in the region. In this connection, development of mathematical 

approaches suitable for planning, which could be used to obtain optimum estimates of the planned power output 

for the various sources, is important. Dynamic, linear, and nonlinear programming methods compose the theoretical 

basis of these approaches [2-4 ]. 

In the present work some simple mathematical models of least cost planning of power supply are considered, 

optimum plans are found, and ranking of sources is suggested that reflects particular aspects of their economic 

estimation. In particular, depending on the structure of the cost function of the energy production, a procedure of 

differentiation of the sources in the level of their "cost" is suggested, and prospects of using the various sources are 

estimated with regard to expansion or reduction of the output. Problems of estimation of stability of the optimum 

plans under variations in the planned power output are considered. 

1. Mathematical Statement of the Problem. Let us consider n sources with the power output E i for the i-th 

source. The quantity E i is expressed in the form 

E i =  Eio + AEi ,  i =  1,  n .  (1) 

It should be noted that the basic level for particular sources (power plants under construction, promising energy- 

effective technologies, etc.) can be zero and the planned power increment can be negative (reduction of the output 

at environmentally harmful plants, reduction of power import, etc.). Next, we will consider the expected cost ~o i of 

unit power production by the i-th source as a function of the planned power output. In the general case we have 

~ ' i=~~ E = ( E  1 . . . . .  En) , i =  1, n .  (2) 

Functions (2) will have to be expressed analytically. It should be noted that costs (2) depend on some 

factors, among which there are both difficultly predictable and quite definite ones, and therefore description of the 

cost functions is complicated. The first step to simplify the description is to assume that the cost of unit power 
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produced by the i-th source is independent of the power outputs by the other sources j, ] ~ i. Thus, it will be 

assumed that 79i(E) = ~oi(Ei) and the function ~o i will be expanded in a Taylor series in a neighborhood of the basic 

level Eio. We have 

~0 i (AEi )  = ~oi0 + ~OilAE i + ~oi2 (AEi) 2 + . . . .  

where ~oio is the cost of unit power production EiO at the basic level. 

The simplest models for the cost function follow from Eq. (3): 

i =  1, n ,  (3) 

~o i (&El) = ~oi0 , (4) 

~Oi ( ~ i )  = ~OiO q" ~~ ' 
(s) 

i = 1 ,  n ,  

which are applicable for the practical case of sufficiently large planned power increments Ei. Apart from Eqs. (4) 
and (5), fractional power representation of function (3) is used in economic literature: 

~o i (AF, i) = k i (Ei) v1 =- k i (Eio + ~ i )  vi , i = 1,  n .  (6) 

where ki = (Eio)-Vi~oiO and vi is the elasticity factor of the function. If - 1  < vi < 0, functions (6) model a typical 

situation where cost of unit power production decreases as the power output rises and the total cost ~oi(Ei)Ei 

increases simultaneously. 
The fractional polynomial approximation of the functions ~o i (Pad~ approximant) is also rather flexible: 

~OiO + a l A E  i + . . .  + ap (AEi)  p (7) 
(aeO = 

1 + fll/kEi + . . .  + ill: (AEi) k 

We will formulate the problem of minimizing the total cost of the power production in the following way. 

The cost functions for power production by the/- th power source will be formed as 

cot (/ME/) = ~o i (AE/) (E 0 + AEi), i = 1, n ,  (8) 

and the total cost function will be considered: 

n 

co ( /~-)  = ~ o9 i (AF.i) " (9) 
i=1 

The objective of optimization is to determine the optimum plan AE* = (Z~l,...,kaAL~n) providing the 

minimum function co (AE) 

co (AE*) = min 09 (AE), (10) 
AE 

u (11)  E aei= Q, 
i=1 

i = l , n .  (12) 

with the additional limitations 

AEi rain -< AEi -< AEi max, 
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Relation (11) ensures the planned power increment Q, and inequalities (12) describe admissible ranges of 

change of the power output. The quantities AE i rnin and AE i max depend on many factors, among which we can 
mention socio-economic, technological, etc. Compatibility of limitations (11) and (12) is equivalent to satisfying 

the condition 

/2 /2 
_ ( 1 3 )  E AEimin < Q < E AEimax" 

i=1 i=1 

It should be noted that the planned increment can be both positive (expansion of the output) and zero 

(preservation of the total achieved level) or negative (reduction of the output). In each of the cases enumerated, 

minimization problem (10)-(12) has meaning. For example, if Q < 0, the optimum plan describes the optimum 

redistribution and reduction of the existing output. 
In the general case the optimum plan can be found with the use of numerical algorithms employed in the 

method of dynamic programming well known in the theory of optimum processes [2 ]. However, in standard 

problems solved by this method there are no upper bounds set on the functions, and therefore in Appendix I the 

method of dynamic programming is described with account for such limitations. 

2. Examples of Explicit Solution and Analysis of the Optimization Problem. Along with numerical 

realization, in the general situation for analysis and qualitative investigation of least cost planning, cases of explicit 

solution of optimization problem (6) are of great interest. In particular, the problem of linear programming 

/2 /2 

~, ~oioAEi.-->min, ~ A E i =  Q ,  A E i E  [AEimin, AEimax], i =  1,  n ,  (14) 
i = 1  i = 1  

having an explicit solution, follows from general problem (10)-(12) with choice of the cost function in the form of 

Eq. (4). 

For a description of the solution of problem (13), the sources will be arranged in the order of increasing 

costs of unit power production in the basic outputs: 

~o10 ~ ~o20 < . . .  < ~On0 " (15) 

Then, the source j satisfying the conditions 

f-1 n ~ n 
AEimax + E AEimin < Q,  AEimax -I- E AEimin > Q. (16) 

i= 1 i=] i= 1 i=j+ 1 

will be determined. 

Then, the optimum plan has the form 

Ae~ = 

AEimax,  if i ~ { 1 ,  2 . . . . .  j - l } ,  

Q - AEi max - AEi min , if i = j ,  
i = 1 i=]+ 1 

AEimi~, if i ~ { ] + l ,  ..., n} ,  i = l , n .  

(17) 

The proof of optimality of plan (17) is given in Appendix II. 
It should be noted that in this very simple case the structure of optimum plan (17) is quite consistent with 

the intuitive idea of the optimum decision: the power output from "expensive" power sources is reduced as much as 

possible, while the power output from "cheap" sources is increased as much as possible. Ranking of the sources as 
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# Q+b 

Fig. 1. Graphical representation of the dependence of the optimum plan on 
the planned power increment. 

expensive and cheap is determined by inequalities (16), which identify the boundary source./with an intermediate 

structure of the production. 

The stability of the ranking and the optimum plan (17) under variations in the planned output Q of power 

increment depends on the potentialities of the boundary source j. In general situations slight variations in Q are 

compensated by changes in the power output by the boundary source ]. With substantial changes in Q the boundary 

source is displaced and structural rearrangements occur in the sources next to the boundary one. 

Using the theory of Lagrange multipliers [3 ], one can easily obtain an explicit solution of optimization 

problem (10) also in the case where the cost functions have the form of Eq. (5), ~il > 0, i = 1, n, and the variables 

AE i have a lower bound set by the natural limit -Eio, i.e., where the inequalities 

Eio + AE i>-O, i =  l ,  n .  (18) 

are satisfied. 
Moreover, it will be assumed that after freezing of the production, the cost of "production" of unit power 

is zero, and then ~i(-Eio) = 0, i = I, ft. 
With the above limitations the optimum plan is calculated from the formulas 

(~O]lB)-lln) (19) Q+ E e,o -e:o, j=l,n, 
i=I 

nlff l l ,  where B 2 iX  = 
une more explicit solution of problem (10) will be given, where the cost functions are chosen in the form 

of Eq. (9), the elasticity factors are equal for all the sources (v i ---v, i = 1, n), and inequalities (18) are satisfied. 

Then, 

i=I 

*ID-l(n ) (20) 
= /,:" Q+ Y. eio - e:o , i = l , n, 

i--I 
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Fig. 2. Plot of the optimum plan versus Q in the case of a balanced structure 

of the basic power production. 

Unfortunately, formulas (19) and (20) are not as obvious as optimum plan (17). However, optimum plans 
(19) and (20) have the remarkable property that they are linear functions of the planned volume of power increment 

Q. Indeed, relations (10) and (20) can be reduced to the formula 

A E ; = a / Q +  b.i , ] =  1, n ,  (21) 

/2 rt 

where a / =  1/~OjlB, b] = ay Y EiO - Ej for formula (10) and a 7 = k)&D, b] = a] Y, Eio - E] for formula (20). The 
i = 1  . i = 1  coefficients a] and b 7 clearly satisfy the relations 

rt rt 

a i=  1, a i <  1, i =  1, n;  ~ b i = O .  (22) 
i = 1  i = 1  

The linearity of functions (21) can be used conveniently for the ranking of sources, reflecting their 

dynamism and prospects in the case of expansion (or, on the other hand, reduction) of power output. Evidently, 

this ranking is determined by the chain of inequalities 

1 > a  1 >_a 2>_. . .>_a n > O .  ( 2 3 )  

A graphical representation of functions (21) also gives an obvious idea of the dynamism of particular sources 

(Fig. 1). It should be noted that the simplest situation occurs when the structure of the basic power production has 
already been balanced and, consequently, is optimum. In this case the basic levels Eio of the sources satisfy the 
system of equations 

b i (Eio) = O, i = 1, n ,  (24) 

and optimum plan (21) is described by the relation AET] = ajQj, j = 1, n (see Fig. 2). 

A P P E N D I X  I 

The solution of optimization problems by the method of dynamic programming is based on construction of 
the Bellman function. For problem (10)-(12) the Bellman function Bs(y) is determined as follows: 
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$ 
Bs(Y)=min  Z ~ s e { 1  . . . .  , n } .  (A.I.1) 

AE i=l 

In this case the components of the vector AE should a satisfy the conditions 

AE i E [AE i rain, AEi max ],  
$ 

i= 1, n,  ~ AE i = y  G Ys, (A.I.2) 
i=l 

Ys = Aeimin, Z AEimax f3 Q -  AEimax , Q -  AEimin . (A.I.3) 
i=l i=l i=s+ l i=s+ l 

It follows from (A.I. 1), (A.I.2), and the optimality principle [2 ] that the function Bs(y) is a solution of the Bellman 
equation 

Bs+ 1 (y) = min [COs+ 1 (AEs+I) + B s (y - AEs+I) ] ,  
AEs+ 1 EOs+ 1 (Y) 

(A. I. 4) 

where the set Os+l(y ) has the form 

Os+l (Y)= { AEs+I : AEs+I ~ [AEs+I rain, AEs+traax] n (Y-  Ys) }, Y~ Ys+l" 

Moreover, the following equality holds: 

B 1 (y) = w  1 (y), y E  YI, (A.I. 5) 

which should be considered as the initial condition for equation (A.I.4). 

Thus, using Eqs. (A.I.5) and (A.I.4) one can calculate successively the functions B l(y), B2(y) . . . .  The 

functions AE s = as(y), s = 1, n providing a maximum to (A.I.I) are determined concurrently. The optimum plan is 

also calculated successively, but in "inverse time" with the aid of the recurrence relations 

i=k+ 1 

The brief description of the dynamic programming procedure given here differs from the conventional 

description by a more thorough description of the set Ys. 

A P P E N D I X  I I  

The proof of optimality of plan (17) is based on the use of a well-known theorem of linear programming 

[3 ] that states that admissible plans* are optimum if and only if the corresponding values of optimizable functionals 

coincide. 

For  s impl i f i ca t ion  of the  subsequen t  ca lcula t ions  we make  the subs t i t u t i on  of var iables  xi = 
dAE i - AbTimin and  use the  fol lowing nota t ion:  t is the t ranspos i t ion  symbol ,  x = [Xl . . . . .  Xn]t; hi = 
AEimax - Eimin; h -- [hl, ..., hn]t; T0 -- [~~ -.., Tn0]; d -- [1 . . . . .  1 ]; q = Q - • AEimin; < .,. > is the scalar 
product in the Euclidean space R n. i= 1 

Problem (14) is equivalent to the following one: 

(900, x ) - - , m i n ,  O<_x<_h, ( d ,  x ) = q .  (A. II. 1) 

* It should be noted that the plan is admissible if it satisfies the limitations for the problem of linear programming. 
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The problem dual to (A.II.1) has the following form: 

T 
qYn+l - ( h ,  x )  ~ max (Yn+l E R, y E R n) , d Yn+l - Y < 790, Y > O. (A.II.2) 

Admissibility of the plan for problem (A.II.1) 

h i ,  i = l , j - 1 ,  

. "]~ hi x i = q -  , i = ] ,  
i=l 

O, i = j + l ,  n ,  i E { I , 2  . . . .  , n } ,  

(A.II.3) 

and of the plan for problem (A.II.2) 

79]0- 79i0, i = 1, ] -  1, 
7--_ (A.II.4) 

Yi = O,  i = ] ,  n ,  

7910' i = n + l ,  i E { 1 ,  2 . . . . .  n + l } ,  

]-I  i 
and Zh.  > On the other hand, it is clear that is verified directly. Here ] satisfies the inequalities Z h i < q z - q. 

. i = 1  
< 790, x* > = qYn+l - < h, y* >. Therefore, according to the ably theorem, plans (A.II.3) and (A.II.4) are l e 

optimal. Hence, optimality of plan (17) follows immediately. 

NOTATION 

E/, power output of the i-th source; Eio, basic level of power production; AE/, planned power increment; 
79i, cost of unit power production; v i, elasticity factor of the function 79i; Q, total planned power increment; Bs(Y), 
Bellman function. 
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